

Antenna Mount Analysis

April 12, 2022

Site: SFSFO00411D Type: Rooftop

Address: 350 Calle Principal, Monterey, CA 93940

County: Monterey County

Lat/Long: 36° 36′ 1.0" N, 121° 53′ 42.3" W (36.600280, -121.895080)

P#/Eng: P-065394/MN

J5 Infrastructure Partners (J5IP) is pleased to submit this antenna mount analysis report to Dish. The purpose of this analysis is to evaluate existing antenna mounts. The project scope of work relevant to this report includes the following items:

- Remove (6) (E) Panel Antennas
- Install (6) (P) Panel Antennas

A site visit was performed by J5IP personnel on November 19, 2021. Existing elements relevant to the project scope of work were visually inspected and found to be in good condition.

This report was prepared in accordance with the 2019 CBC, ASCE 7-16, and the AISC 360-16.

This analysis is based off third party data and assumes satisfactory workmanship of all previously-installed and proposed components. If existing conditions vary from what is shown in this report, or if assumptions made within this analysis are inaccurate, the Engineer of Record shall be notified immediately in writing.

It has been our pleasure to be of service to you in this matter. The results of our analysis are summarized in the table below. Please contact us should you have any specific questions, require further clarification, or if we can be of further service.

Sincerely,

J5 Infrastructure Partners, Inc.

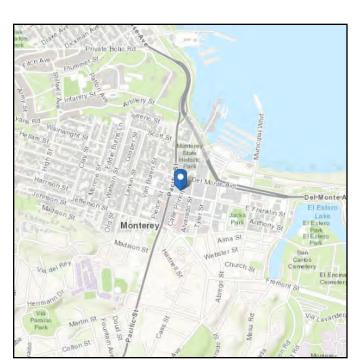
Description of Element	Demand- Capacity Ratio	Result	Notes
(E) Antenna Mast (Pipe 2 STD)	26%	PASS	
(E) Standoff (HSS3x3x3/16)	14%	PASS	
(E) Mount Anchorage (1/2"Ø - A307 Thru. Bolt)	15%	PASS	

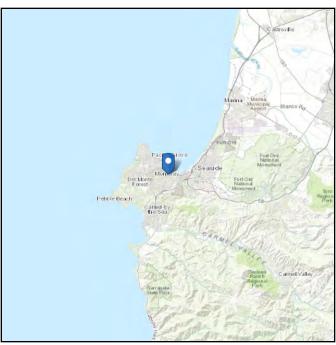
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: ^Ⅱ


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 30.86 ft (NAVD 88)

Latitude: 36.60028 Longitude: -121.89508

Wind

Results:

Wind Speed 92 Vmph 10-year MRI 63 Vmph 25-year MRI 70 Vmph 50-year MRI 74 Vmph 100-year MRI 78 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Mon Jan 17 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.33 N/A T_L : S₁ : 12 0.497 F_a : 1.2 PGA: 0.576 F_v : N/A PGA_M: 0.692 S_{MS} : 1.596 F_{PGA} : 1.2 S_{M1} : N/A I_e : 1 S_{DS} : 1.064 C_{v} : 1.366

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Mon Jan 17 2022

Date Source: USGS Seismic Design Maps

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Engineer: MM

Date: January 17, 2022

Loads on Building Appurtenances (page 1 of 2)

- Design is in accordance with the 2018 IBC.

- Seismic loads are 1.0E

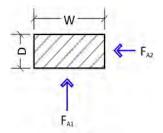
- Wind loading procedure is per ASCE 7-16 CH 29.4

- Wind loads are 1.0W

Site Criteria - Wind (ASCE CH 26.10.2)

Exposure:	С	(ASCE CH 26.7)
K _{zt} :	1.00	(ASCE CH 26.8.2)
K _e :	1.00	(ASCE CH 26.9)
V:	92 mph	(ASCE CH 26.5.1)

Site Criteria - Seismic (ASCE CH 13.3)


S _{DS} :	1.064 g	
I _p :	1.0	(ASCE CH 13.1.3)
a _p :	1.0	(ASCE Table 13.6-1)
R _p :	2.5	(ASCE Table 13.6-1)

Building Info

h: 96 ft (Mean roof height)z_g: (Ground elevation)

EXPOSURE C

Flat Appurtenance Plan View

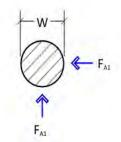


Figure 2
Round Appurtenance
Plan View

See next page for individual appurtenance loads.

Engineer: MM

Date: January 17, 2022

Loads on Building Appurtenances (page 2 of 2)

Building Appurtenances

			Dimensions & Weight Wind			Seismic						
Description	Туре	Z	Н	W	D	W _p	F _{A1}	F _{A2}	q _z		F _p	
		ft	in	in	in	lb	lb	Ib	psf	lb	W _p	z/h
MX08FRO665-21	Flat	96	72	20	8	74.5	328	143	24.4	38	0.51	1.00
JMA												

Engineer: MM

Date: January 17, 2022

Load Combinations for Building Appurtenances

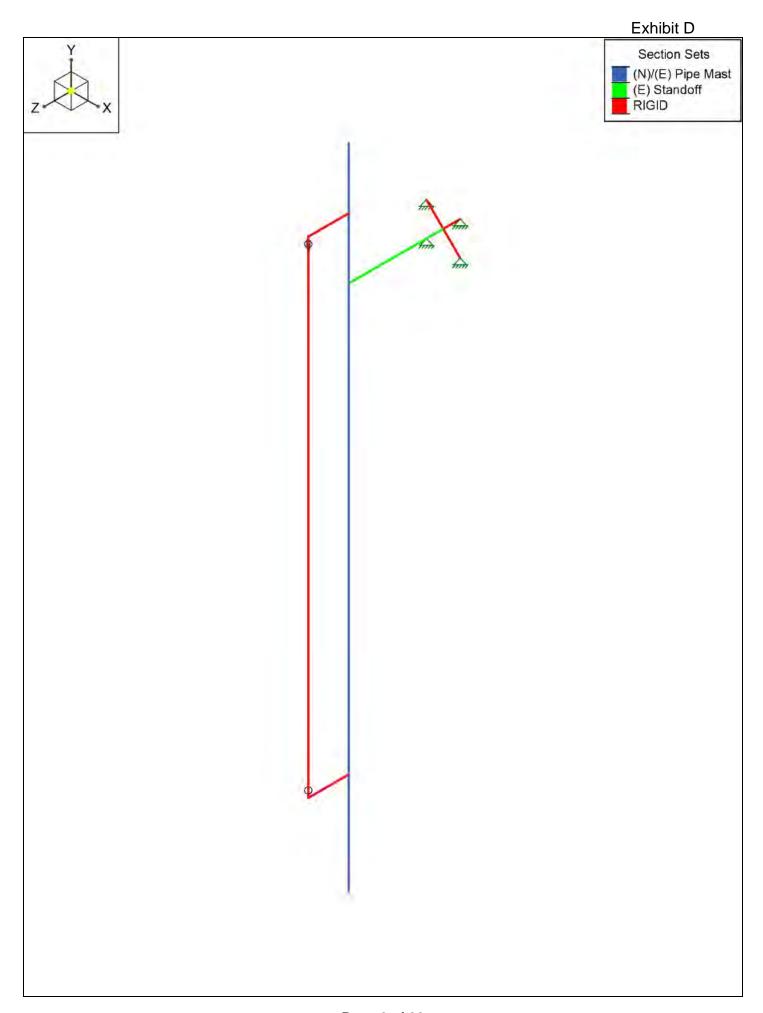
<u>Codes & Standards</u> <u>Project Criteria</u>

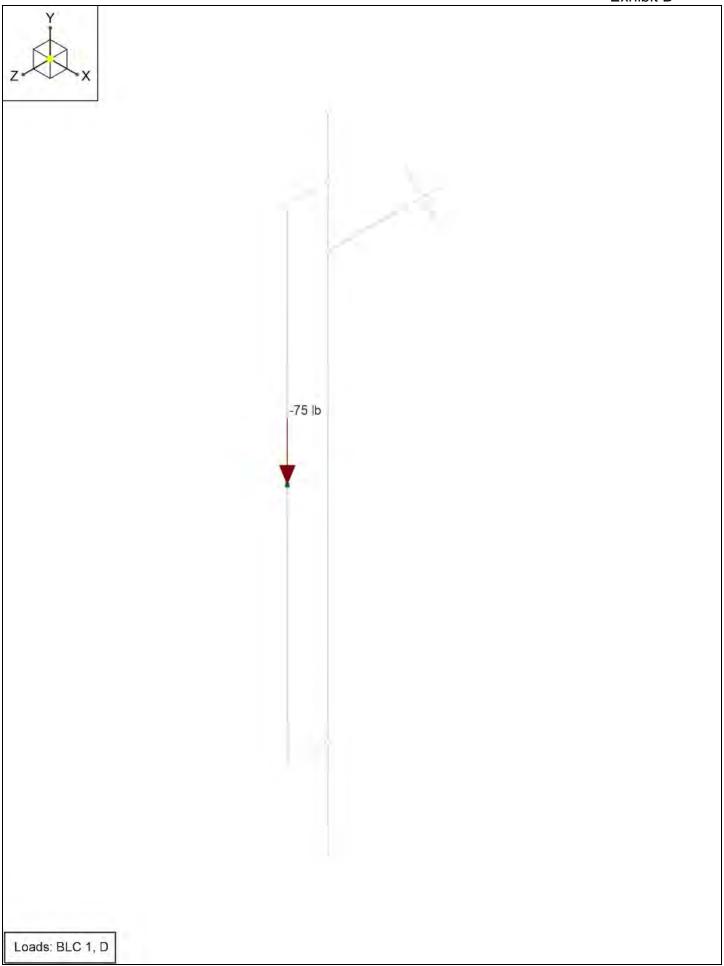
- 2018 IBC	S _{DS} :	1.064	
- ASCE 7-16	Ω_{o} :	2.0	(ASCE Table 13.6-1)
	f ₁ :	0.5	(IBC 1605.2)
	f ₂ :	0.2	(IBC 1605.2)

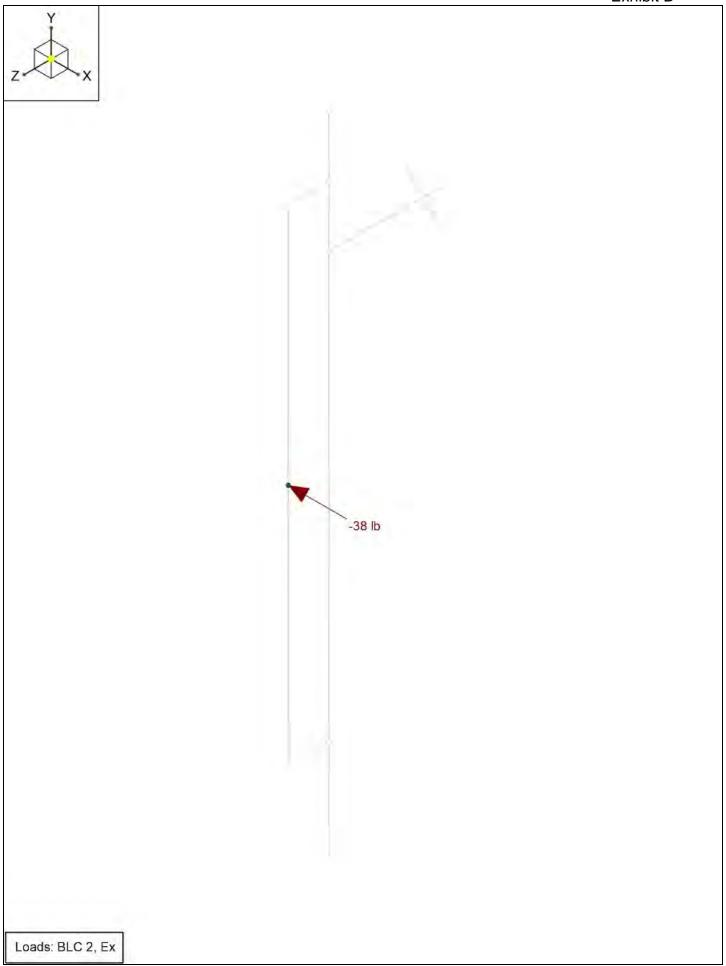
Load Combinations - LRFD

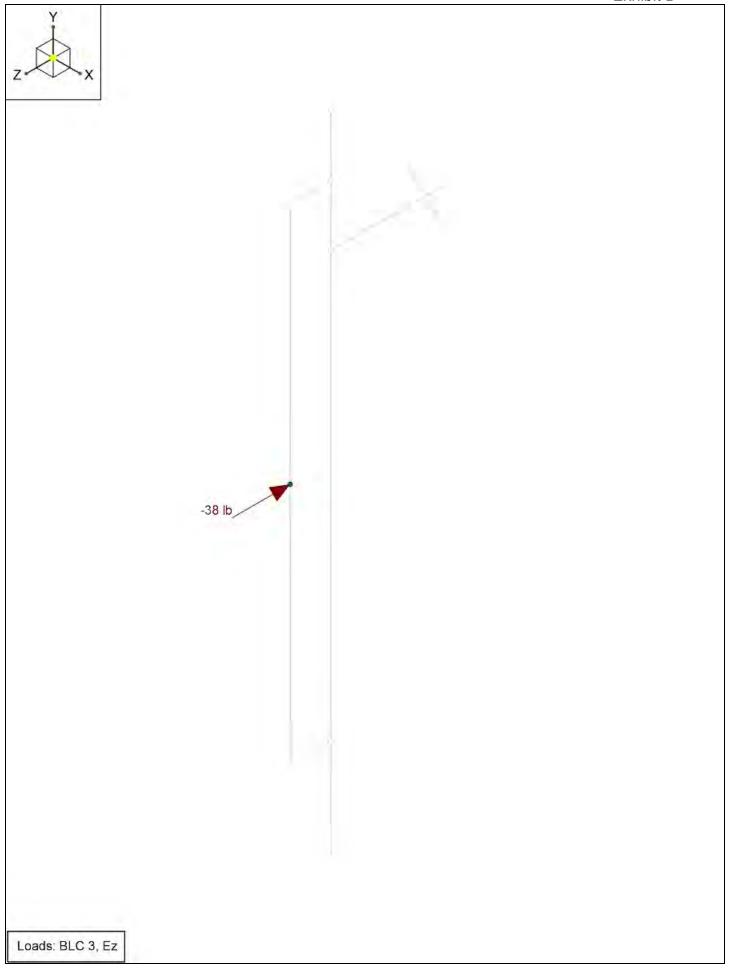
- The following load combinations are applied in our analysis model.
- Lateral loads are considered in 2 orthogonal directions.
- For load definitions see IBC 1605.2 and ASCE 12.4

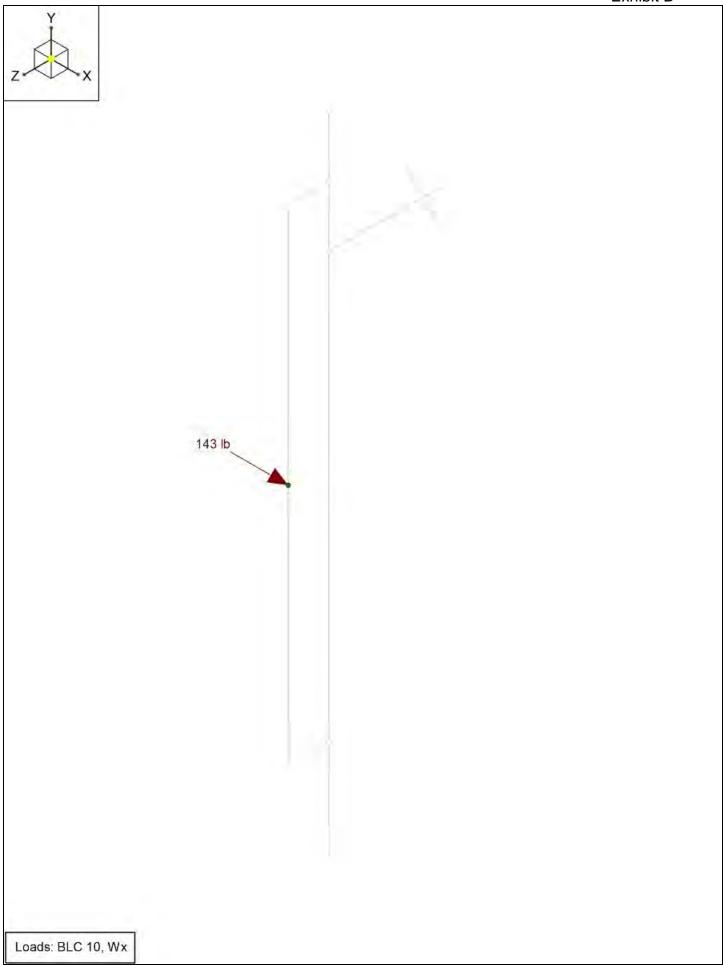

Load Combinations - ASD

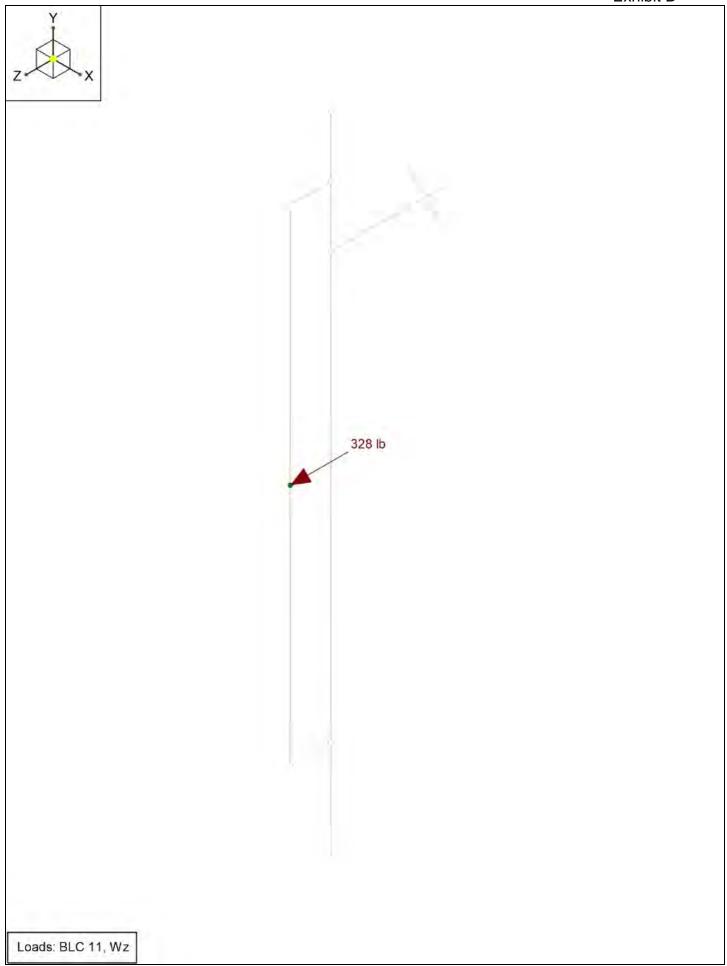

- The following load combinations are applied in our analysis model.
- Lateral loads are considered in 2 orthogonal directions.
- For load definitions see IBC 1605.2 and ASCE 12.4

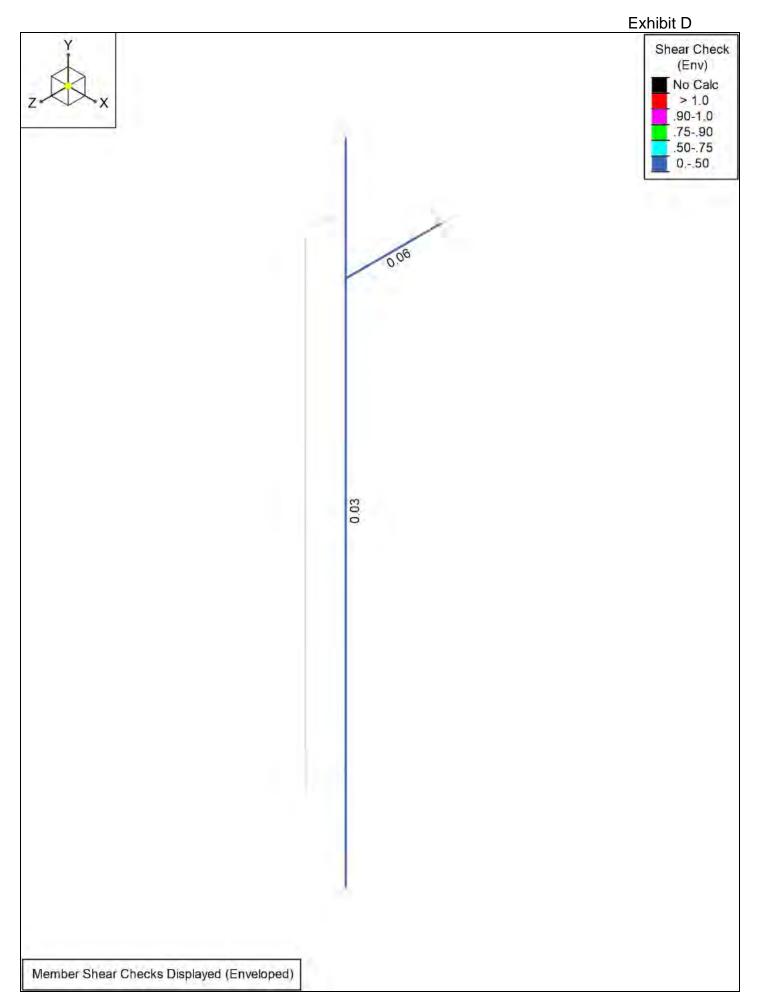

LC11: D + F	(IBC Eq 16-8)
LC12: D+H+F+L	(IBC Eq 16-9)
LC13: D + H + F + $(L_r \text{ or S or R})$	(IBC Eq 16-10)
LC14: D + H + F + $0.75L + 0.75(L_r \text{ or S or R})$	(IBC Eq 16-11)
LC15a: D + H + F + 0.6W	(IBC Eq 16-12)
LC15b: $(1.0 + 0.14S_{DS})(D + F) + H + 0.7E$	(IBC Eq 16-12)
LC16: D + H + F + $0.45W + 0.75L + 0.75(L_r \text{ or S or R})$	(IBC Eq 16-13)
LC17: $(1.0 + 0.10S_{DS})(D + F) + H + 0.525E + 0.75L + 0.75S$	(IBC Eq 16-14)
LC18: 0.6D + 0.6W + H	(IBC Eq 16-15)
LC19: $(0.6 - 0.14S_{DS})(D + F) + 0.7E + H$	(IBC Eq 16-16)

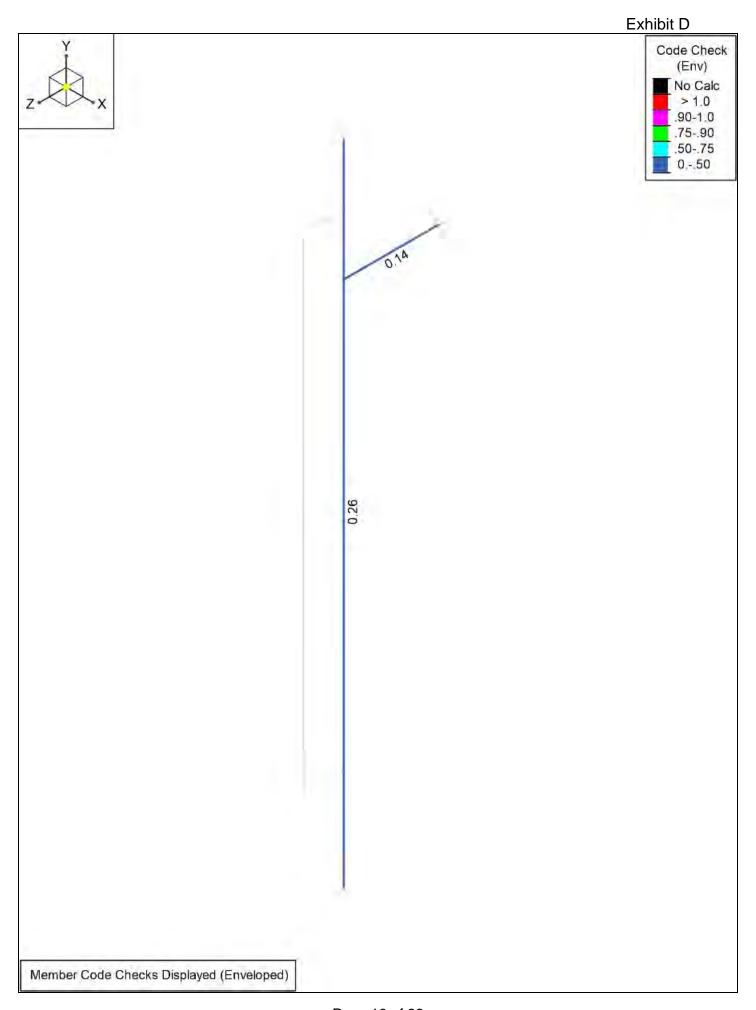

Load Combinations for Anchorage to Concrete - LRFD


- The following load combinations are used to determine anchorage forces for concrete anchorage.









4/12/2022 10:01:15 PM Checked By:_

Company :J5 Infrustructure Designer :MM Job Number :SFSF000411D :J5 Infrustructure Partners

Model Name:AMA

Node Coordinates

	Label	X [in]	Y [in]	Z [in]	Detach From Diaphragm
1	1	-72	6	2.5	
2	3	-72	84	-11.5	
3	9	-72	84	2.5	
4	10	-72	102	2.5	
5	11	-72	93	2.5	
6	12	-72	21	2.5	
7	13	-72	93	8.5	
8	14	-72	21	8.5	
9	Α	-72	57	8.5	
10	15	-69.5	86.5	-11.5	
11	16	-69.5	81.5	-11.5	
12	17	-74.5	86.5	-11.5	
13	18	-74.5	81.5	-11.5	

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]
1	15	Reaction	Reaction	Reaction
2	17	Reaction	Reaction	Reaction
3	18	Reaction	Reaction	Reaction
4	16	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.4	65	1.3
8	FRP	2800	480	0.3	0.65	0.12	16.7	1.4	30	1.3
9	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1
10	F1554 Gr. 55	29000	11154	0.3	0.65	0.49	55	1.1	75	1.1

General Materials Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Plate Methodology
1	gen Conc3NW	3155	1372	0.15	0.6	0.145	Isotropic
2	gen Conc4NW	3644	1584	0.15	0.6	0.145	Isotropic
3	gen Conc3LW	2085	906	0.15	0.6	0.11	Isotropic
4	gen Conc4LW	2408	1047	0.15	0.6	0.11	Isotropic
5	gen Alum	10100	4077	0.3	1.29	0.173	Isotropic
6	gen Steel	29000	11154	0.3	0.65	0.49	Isotropic
7	gen Plywood	1800	38	0	0.3	0.035	Isotropic
8	RIGID	1e+6		0.3	0	0	Isotropic

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	(N)/(E) Pipe Mast	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
2	(E) Standoff	HSS3X3X3	Beam	Tube	A500 Gr.B Rect	Typical	1.89	2.46	2.46	4.03
3	(N)/(E) Bracket	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	0.031
4	SitePro DCP	PL2X0.5	None	None	A36 Gr.36	Typical	1	0.021	0.333	0.07
5	Thread Rod	ROD0.625	None	None	F1554 Gr. 55	Typical	0.307	0.007	0.007	0.015

General Section Sets

Label	Shape	Type	Material	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1 RIGID		None	RIGID	1e+06	1e+06	1e+06	1e+06
2 GEN1	RE4X4	Beam	gen Conc3NW	16	21.333	21.333	31.573

4/12/2022

10:01:15 PM Checked By:_

Company :J5 Infrustructure Partners

Designer :MM:

Job Number :SFSFO00411D Model Name:AMA

Member Primary Data

	Label	I Node	J Node	Section/Shape	Type	Design List	Material	Design Rule
1	1	1	10	(N)/(E) Pipe Mast	Column	Pipe	A53 Gr.B	Typical
2	5	9	3	(E) Standoff	Beam	Tube	A500 Gr.B Rect	Typical
3	6	13	11	RIGID	None	None	RIGID	Typical
4	7	14	12	RIGID	None	None	RIGID	Typical
5	8	14	13	RIGID	None	None	RIGID	Typical
6	9	18	15	RIGID	None	None	RIGID	Typical
7	10	16	17	RIGID	None	None	RIGID	Typical

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal
1	D	DL		-1		1
2	Ex	ELX	-0.51			1
3	Ez	ELZ			-0.51	1
4	F	FL				
5	Н	HL				
6	L	LL				
7	Lr	RLL				
8	R	RL				
9	S	SL				
10	Wx	WLX				1
11	Wz	WLZ				1

Node Loads and Enforced Displacements (BLC 1 : D)

	Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]
1	Α		Y	-75

Node Loads and Enforced Displacements (BLC 2 : Ex)

	Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]
1	Α	L	Х	-38

Node Loads and Enforced Displacements (BLC 3 : Ez)

	Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]
11	Α	1	7	-38

Node Loads and Enforced Displacements (BLC 10 : Wx)

	Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]
1	Δ	ı	Y	1/3

Node Loads and Enforced Displacements (BLC 11 : Wz)

	Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]				
1	Α	L	Z	328				

Load Combinations

	Description	Solve	P-Delta	BLC	Factor										
1	**LC11 (IBC Eq 16-8)**														
2	LC11	Yes	Υ	DL	1	FL	1								
3															
4	**LC12 (IBC Eq 16-9)**														
5	LC12	Yes	Υ	DL	1	HL	1	FL	1	LL	1				
6															
7	**LC13 (IBC Eq 16-10)**														
8	LC13a (Lr)	Yes	Υ	DL	1	HL	1	FL	1	RLL	1				
9	LC13b (S)	Yes	Υ	DL	1	HL	1	FL	1	SL	1				
10	LC13c (R)	Yes	Υ	DL	1	HL	1	FL	1	RL	1				
11															
12	**LC14 (IBC Eq 16-11)**														
13	LC14a (Lr)	Yes	Y	DL	1	HL	1	FL	1	LL	0.75	RLL	0.75		
14	LC14b (S)	Yes	Y	DL	1	HL	1	FL	1	LL	0.75	SL	0.75		

:J5 Infrustructure Partners :MM

Company :J5 Infrustructure Designer :MM Job Number :SFSF000411D Model Name:AMA

4/12/2022 10:01:15 PM Checked By : _

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
15	LC14c (R)	Yes	Υ	DL	1	HL	1	FL	1	LL	0.75	RL	0.75		
16	, ,														
17	**LC15 (IBC Eq 16-12)**														
18	LC15aa (Wx)	Yes	Υ	DL	1	HL	1	FL	1	WLX	0.6				
19	LC15aa (-Wx)	Yes	Υ	DL	1	HL	1	FL	1	WLX	-0.6				
20	LC15ab (Wz)	Yes	Υ	DL	1	HL	1	FL	1	WLZ	0.6				
21	LC15ab (-Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	-0.6				
22	LC15ba (Ex)	Yes	Υ	DL	1.15	FL	1.15	HL	1	ELX	0.7				
23	LC15ba (-Ex)	Yes	Y	DL	1.15	FL	1.15	HL	1	ELX	-0.7				
24	LC15bb (Ez)	Yes	Y	DL	1.15	FL	1.15	HL	1	ELZ	0.7				
25	LC15bb (-Ez)	Yes	Y	DL	1.15	FL	1.15	HL	1	ELZ	-0.7				
26									-		9.1.				
	LC16 (IBC Eq 16-13)														
28	LC16aa (Lr + Wx)	Yes	Υ	DL	1	HL	1	FL	1	WLX	0.45	LL	0.75	RLL	0.75
29	LC16aa (Lr - Wx)	Yes	Y	DL	1	HL	1	FL	1	WLX	-0.45	LL	0.75	RLL	0.75
30	LC16ab (Lr + Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	0.45	LL	0.75	RLL	0.75
31	LC16ab (Lr - Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	-0.45	LL	0.75	RLL	0.75
32	LC16ba (S + Wx)	Yes	Y	DL	1	HL	1	FL	1	WLX	0.45	LL	0.75	SL	0.75
33	LC16ba (S - Wx)	Yes	Ý	DL	1	HL	1	FL	1	WLX	-0.45	LL	0.75	SL	0.75
34	LC16bb (S + Wz)	Yes	Ý	DL	1	HL	1	FL	1	WLZ	0.45	LL	0.75	SL	0.75
35	LC16bb (S - Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	-0.45	LL	0.75	SL	0.75
36	LC16ca (R + Wx)	Yes	Y	DL	1	HL	1	FL	1	WLX	0.45	LL	0.75	RL	0.75
37	LC16ca (R - Wx)	Yes	Y	DL	1	HL	1	FL	1	WLX	-0.45	LL	0.75	RL	0.75
38	LC16cb (R + Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	0.45	LL	0.75	RL	0.75
39	LC16cb (R - Wz)	Yes	Y	DL	1	HL	1	FL	1	WLZ	-0.45	LL	0.75	RL	0.75
40	201000 (11 112)	100								***	0.10		0.70	- '_	0.70
	LC17 (IBC Ea 16-14)														
42	LC17a (Ex)	Yes	Y	DL	1.11	FL	1.11	HL	1	ELX	0.525	LL	0.75	SL	0.75
43	LC17a (-Ex)	Yes	Y	DL	1.11	FL	1.11	HL	1	ELX	-0.525	LL	0.75	SL	0.75
44	LC17b (Ez)	Yes	Ý	DL	1.11	FL	1.11	HL	1	ELZ	0.525	LL	0.75	SL	0.75
45	LC17b (-Ez)	Yes	Y	DL	1.11	FL	1.11	HL	1	ELZ	-0.525	LL	0.75	SL	0.75
46	20115 (22)	100									0.020		0.70		0.70
	LC18 (IBC Eq 16-15)														
48	LC18aa (Wx)	Yes	Y	DL	0.6	WLX	0.6	HL	1						
49	LC18aa (-Wx)	Yes	Ý	DL	0.6	WLX	-0.6	HL	1						
50	LC18ab (Wz)	Yes	Ý	DL	0.6	WLZ	0.6	HL	1						
51	LC18ab (-Wz)	Yes	Y	DL	0.6	WLZ	-0.6	HL	1						
52	201000 (112)	100	'	DL_	0.0	V V L Z	0.0	115							
	LC19 (IBC Eq 16-16)														
54	LC19a (Ex)	Yes	Υ	DL	0.45	FL	0.45	ELX	0.7	HL	1				
55	LC19a (-Ex)	Yes	Ϋ́	DL	0.45	FL	0.45	ELX	-0.7	HL	1				
56	LC19b (Ez)	Yes	Ý	DL	0.45	FL	0.45	ELZ	0.7	HL	1				
57	LC19b (-Ez)	Yes	Y	DL	0.451	FL	0.451	ELZ	-0.7	HL	1				
UI	LO 100 (-LZ)	103			U.TU1	1 -	U.TU1		-0.7	115					

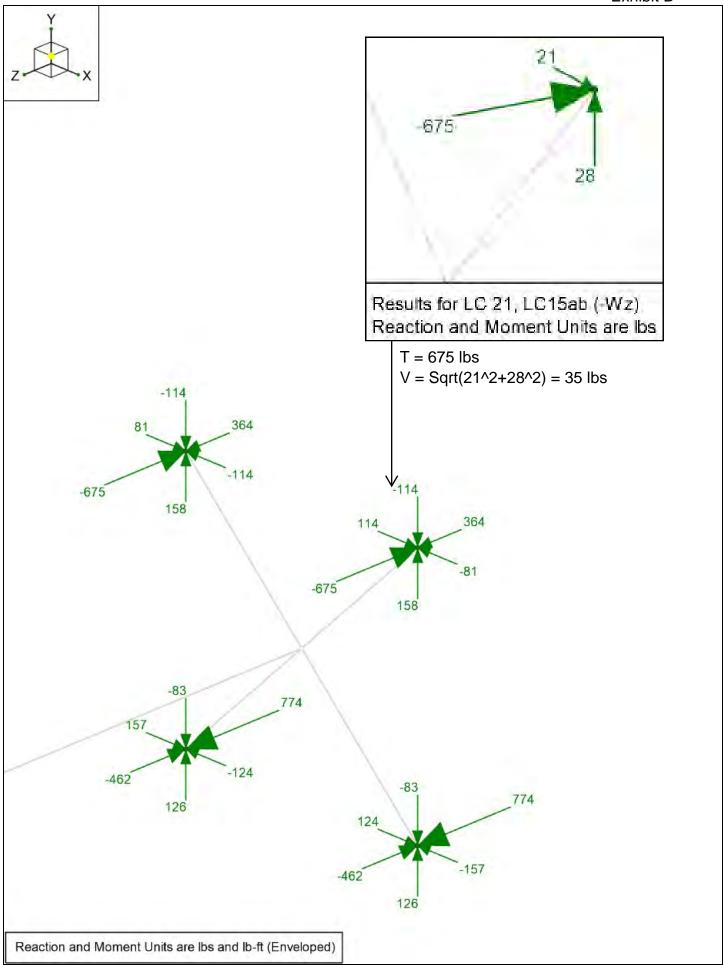
Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	15	max	113.76	18	158.27	19	363.52	50	0	57	0	57	0	57
2		min	-81.32	49	-114.41	48	-675.36	21	0	2	0	2	0	2
3	17	max	81.32	48	158.27	18	363.52	50	0	57	0	57	0	57
4		min	-113.76	19	-114.41	49	-675.36	21	0	2	0	2	0	2
5	18	max	156.66	19	126.42	18	773.76	21	0	57	0	57	0	57
6		min	-124.22	48	-82.56	49	-461.92	50	0	2	0	2	0	2
7	16	max	124.22	49	126.42	19	773.76	21	0	57	0	57	0	57
8		min	-156.66	18	-82.56	48	-461.92	50	0	2	0	2	0	2
9	Totals:	max	85.8	19	127.46	24	196.8	21						
10		min	-85.8	18	49.88	55	-196.8	50						

Envelope AISC 15TH (360-16): ASD Member Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	Pnc/om [lb]	Pnt/om [lb]	Mnyy/om [lb-ft]	Mnzz/om [lb-ft]	Cb	Eqn
1	1	PIPE 2.0	0.26	78	21	0.03	87		19	9924.22	21377.25	1245.26	1245.26	1	H1-1b
2	5	HSS3X3X3	0.14	14	21	0.06	14	У	19	51535.2	52059.88	4521.96	4521.96	1.09	H1-1b

Company :J5 Infrustructure Partners Designer :MM Job Number :SFSFO00411D Model Name:AMA


4/12/2022 10:01:15 PM Checked By : _

Material Take-Off

	Material	Size	Pieces	Length[in]	Weight[K]
1	General Members				
2	RIGID		5	98.1	0
3	Total General		5	98.1	0
4					
5	Hot Rolled Steel				
6	A500 Gr.B Rect	HSS3X3X3	1	14	0.01
7	A53 Gr.B	PIPE_2.0	1	96	0.03
8	Total HR Steel	_	2	110	0.04

Warning Log

No Dota to Doint
No Data to Print

Page 21 of 22

Engineer: MM

Date: April 12, 2022

Steel Bolts & Threaded Parts Check (Shear & Tension)

- Design is per the 2018 IBC.

- Tension & Shear checks are per AISC J3.6

- Design checks are per AISC 360-16.

- Combined tension & shear checks are per RCSC 5.2

- Threads are included in all design checks.

<u>General</u>

Item Checked: (E) Antenna Mount Anchorage

Design Criteria

Material Properties (AISC Table J3.2)

Design Method: ASD F_u: 60 ksi (AISC Table J3.2) Bolt Material: A307 Bolts F_{nt}: 45 ksi (AISC Table J3.2) F_{nv}: 27 ksi (AISC Table J3.2)

Bolt Results - ASD

 T_a : 675 lb (ASD Tension) Ω : 2.00 (ASD Safety Factor)

V_a: **35** lb (ASD Shear)

Во	olt	Ten	sion	Sh	ear	Combined Tension & Shear	
Size	A _b	T _n /Ω	$T_a/(T_n/\Omega)$	V_n/Ω	$V_a/(V_n/\Omega)$	$(\Omega T_a/T_n)^2 + (\Omega V_a/V_n)^2$	Max Ratio
in	in ²	lb	'a/('n/\$2)	lb	v _a /(v _n /12)	$(21^{a}/1_{n}) + (22^{a}/1_{n})$	Natio
1/4	0.049	1,104	0.61	663	0.05	0.38	0.61
3/8~	Q110	2,485	~0-27	1,491	~ }	markann and a second	-027
1/2	0.196	4,418	0.15	2,651	0.01	0.02	0.15
5/8	0.307	6,903		4,142). 7:		
3/4	0.442	9,940	0.07	5,964	0.01	0.00	0.07
7/8	0.601	13,530	0.05	8,118	0.00	0.00	0.05
1	0.785	17,671	0.04	10,603	0.00	0.00	0.04

Bolt Results - LRFD (Not Applicable)

762 lb (LRFD Tension) 0.75 (LRFD Resistance Factor) T_u : **703** lb (LRFD Shear) V.,: Bolt Tension Tension & Shear Max ϕV_n A_b Ratio φT_n φV_n lb 1/4 1,657 0.46 994 0.71 0.71 0.71 3/8 3,728 0.20 0.14 0.31 1/2 6,627 0.11 0.18 0.04 0.18 5/8 0.307 10,354 0.07 6,213 0.11 0.02 0.11 3/4 0.442 14,910 0.05 8,946 0.08 0.01 0.08 7/8 0.601 20,295 0.04 12,177 0.06 0.00 0.06 0.03 15,904 0.04 0.00

STRUCTURAL MAPPING

For:

CABINET PLATFORM, ANTENNA PARAPETS & RADIO FRAMES

Prepared By:

Darren Reimer, PE.

Checked By:


Naser Salem, PE., SE.

Report No. 2022-7766 March 25, 2022

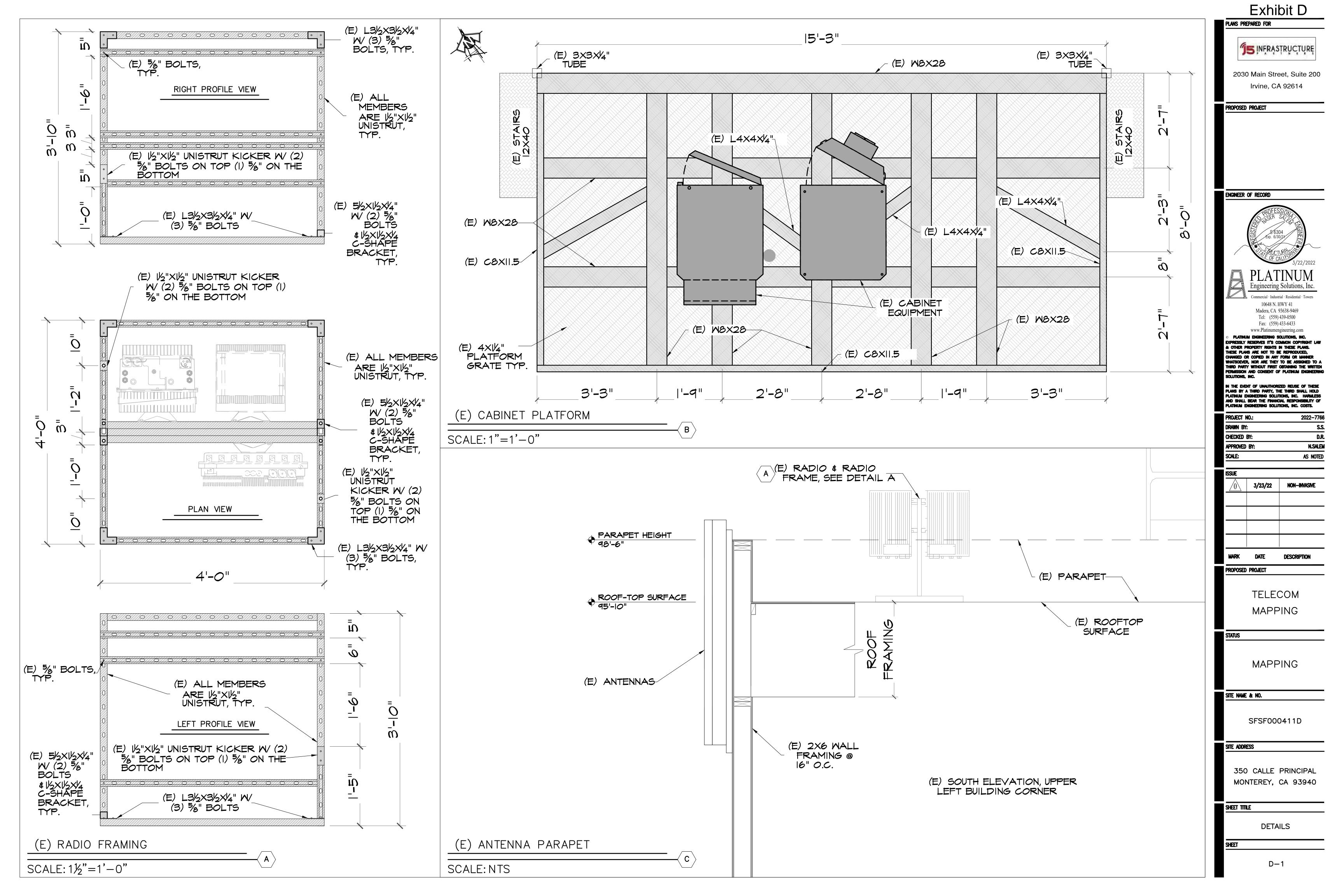
Site Name: SFSF000411D

350 Calle Principal Monterey, CA 93940

Site Number: SFSF000411D

2030 Main Street, Suite 200

A: OTHER PROPERTY RIGHTS IN THESE PLANS. THESE PLANS ARE NOT TO BE REPRODUCED, CHANGED OR COPIED IN ANY FORM OR MANNER WHATSOEVER, NOR ARE THEY TO BE ASSIGNED TO A THIRD PARTY WITHOUT FIRST OBTAINING THE WRITTEN


PLATINUM ENGINEERING SOLUTIONS, INC. HARMLESS AND SHALL BEAR THE FINANCIAL RESPONSIBILITY OF PLATINUM ENGINEERING SOLUTIONS, INC. COSTS.

N.SALEM

3/23/22 NON-INVASIVE

DESCRIPTION

MONTEREY, CA 93940

Description

Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766

Rev.

Date

A. AUTHORIZATION/PURPOSE	2
B. HISTORY	2
C. ASSUMPTIONS	2
D. PROVISIONS	3
<u>APPENDIX</u>	

Checked By: Naser Salem, PE., SE.

Date: 3/25/2022 Rpt No. 2022-7766

-			
	Rev.	Date	Description
			•

A. AUTHORIZATION/PURPOSE

As authorized by Adriana Villalobos from J5 Infrastructure Partners, a structural mapping was performed to investigate the properties of the existing equipment cabinet platform, antenna parapet and radio frames of the building located at 350 Calle Principal, Monterey, CA 93940.

B. HISTORY

- 1. Platinum Engineering has received the site location and access information Adriana Villalobos at J5 Infrastructure Partners, in the form of email.
- 2. Platinum Engineering Solutions Inc. visited the site and performed a mapping on March 16, 2022, took pictures and the following measurements necessary with standard tapes, laser, surveying equipment:
 - a. Structural map of equipment cabinet platform, antenna parapets and radio frames.
 - b. Member section dimensions and connections

C. ASSUMPTIONS

- 1. Site will be regularly serviced for telecom facility maintenance including weatherproofing, live growth abatement, drainage, ground wire paths, and straight plumb verification.
- All structural members not included in this observation are also in good condition, site was built using industry standard construction, and bolts have appropriate installation torque.
- 3. All structural members, fasteners, and welds are regularly checked for cracks, deflection, rust, mold, rot or any signs of failure or serviceability issues.
- 4. All structural members concealed by finishing are assumed continuous with measurements matching portions of the structure that are accessible.

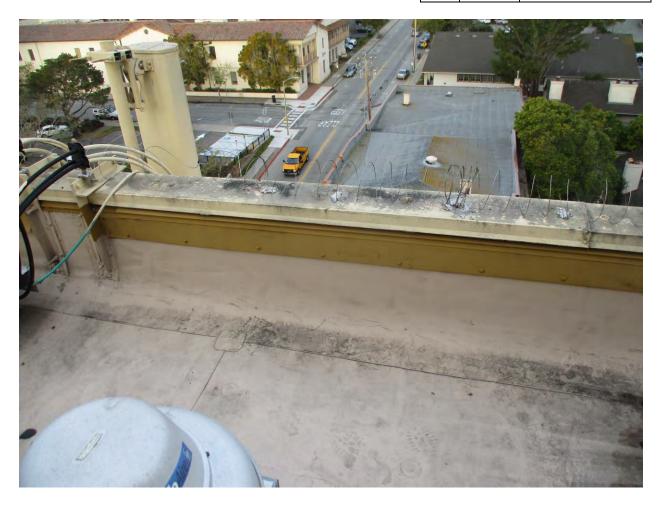
Checked By: Naser Salem, PE., SE.

Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

D. PROVISIONS OF ANALYSIS

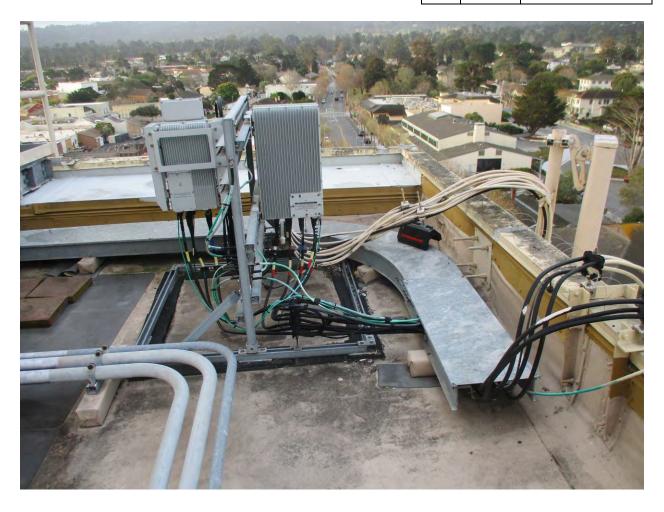
The analysis performed and the conclusions contained herein are based on the assumption that the structure had been properly built per the original drawings and maintained per the current code. And there is no significant deterioration or damage to any component.


Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae, and Platinum Engineering Solutions, Inc. assumes no obligations to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Platinum Engineering Solutions, Inc. have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Platinum Engineering Solutions, Inc. if any, pursuant to this Report shall be limited to the total funds actually received by Platinum Engineering Solutions, Inc. for preparation of this Report.

Customer has requested Platinum Engineering Solutions, Inc. to prepare and submit to Customer an engineering analysis with respect to the Subject Structure and has further requested Platinum Engineering Solutions, Inc. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Structure. In making such request of Platinum Engineering Solutions, Inc. Customer has informed Platinum Engineering Solutions, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Platinum Engineering Solutions, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice.

Customer hereby agrees and acknowledges that Platinum Engineering Solutions, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Platinum Engineering Solutions, Inc. in connection with the implementation of any structural changes or modifications recommended by Platinum Engineering Solutions, Inc. including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Platinum Engineering Solutions, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor.

Checked By: Naser Salem, PE., SE. Page No. 4
Date: 3/25/2022 Rpt No. 2022-7766


Rev.	Date	Description

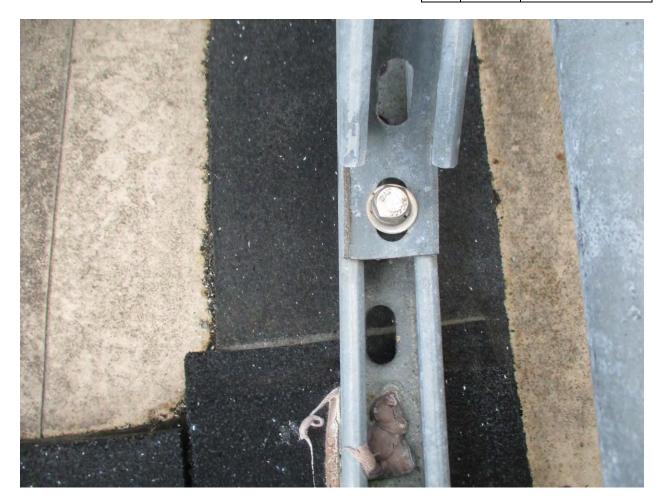
Page No. 5 Rpt No. 2022-7766

Checked By: Naser Salem, PE., SE.
Date: 3/25/2022

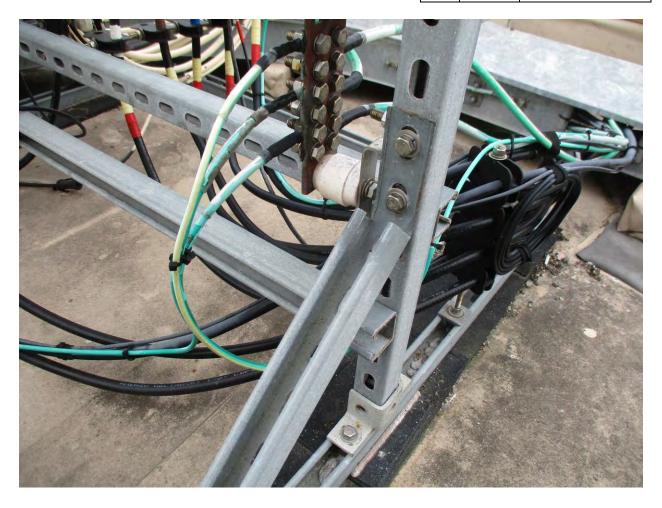
Rev.	Date	Description

Page No. 6 Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description


Checked By: Naser Salem, PE., SE. Page No. 7 Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description


Checked By: Naser Salem, PE., SE. Page No. 8 Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Page No. 10
Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE.

Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Rpt No. 2022-7766 Date: 3/25/2022

Rev.	Date	Description

 Checked By: Naser Salem, PE., SE.
 Page No. 14

 Date: 3/25/2022
 Rpt No. 2022-7766

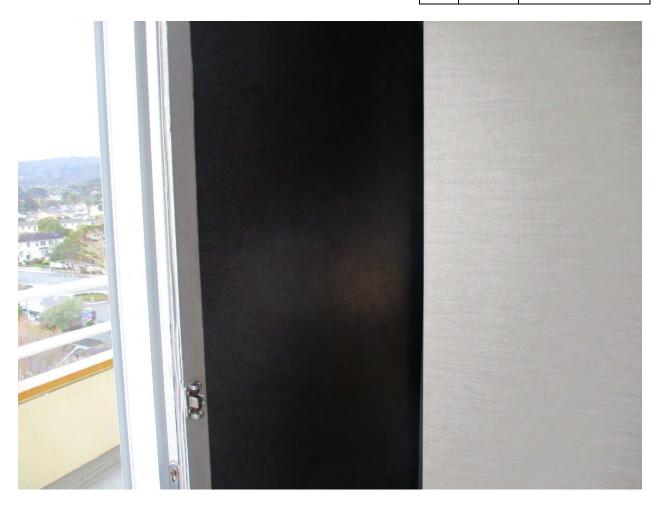
Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Page No. 15
Date: 3/25/2022 Rpt No. 2022-7766

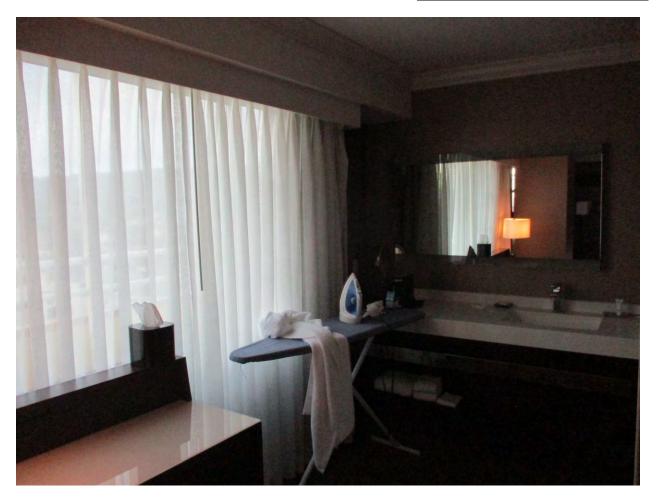
Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Page No. 16
Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

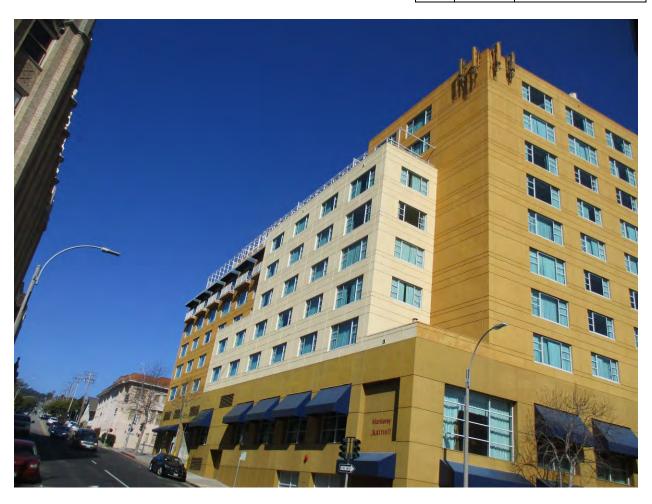

Checked By: Naser Salem, PE., SE. Page No. 17
Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description


Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766

Rev.	Date	Description

Checked By: Naser Salem, PE., SE. Date: 3/25/2022 Rpt No. 2022-7766


Rev.	Date	Description

 Checked By: Naser Salem, PE., SE.
 Page No. 20

 Date: 3/25/2022
 Rpt No. 2022-7766

Rev.	Date	Description

